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Abstract: Energy homeostasis, a term used to designate the physiological processes that regulate the metabolic state, is
controlled by different organs, including the brain. Leptin and insulin play a key role in the central control of feeding and
body weight, with interconnected signaling pathways at various levels. In addition, central resistance to their actions has a
primary role in the pathogenesis of obesity and type 2 diabetes. Studies performed in knockout mice for insulin targets show
that the impairment of insulin signaling is related to changes in learning and memory. Moreover, circadian neurological
alterations induce metabolic processes that lead to obesity and insulin resistance in patients with mental disorders. Thus,
leptin and insulin signaling may be a link between the pathophysiological states affecting energy homeostasis and the
appearance of mental illnesses. Pharmacological targeting for these signaling pathways could lead to important medical
benefits in these diseases.

4.1 INTRODUCTION

This chapter first reviews the central regulation of
food intake and energy balance. Brain insulin-leptin
signaling mechanisms and the cross-talk between
these hormones are described. Finally, some situa-
tions where metabolic disorders and neurodegener-
ative diseases associated with disturbances in leptin
and/or insulin signaling are illustrated.

Current evidence indicates that the central nervous
system (CNS) plays a key role in the control of food
consumption and energy homeostasis. The regula-
tion of body weight is the result of the combination
of peripheral signals and central mechanisms where a

negative feedback mechanism between other control
systems seems to be implicated. According to this
idea, peripheral signals related to energy homeosta-
sis are sensed by central structures to induce phys-
iological outputs that modulate feeding and energy
expenditure. In addition, behavioral outputs are also
involved in this response. Thus, the availability of
nutrients via leptin and insulin signaling is detected
and regulated not only in hypothalamic nuclei, but
also in other brain regions, such as the hippocam-
pus, a critical brain area for learning and memory
functions, which plays a key role in the regulation of
energy balance [1].
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Data show that obesity could be a risk factor for
neurodegenerative disorders, especially Alzheimer
disease (AD). Initial studies revealed that being obese
when middle aged increases the risk of developing
dementia in the future [2] and that inflammatory
processes and hyperglycemia establish a relationship
between fat mass and serum �-amyloid (A�) con-
tent [3]. Recently, a link between obesity and AD has
been proposed to occur through several hormones
that participate in the regulation of food intake and
energy homeostasis, in particular, leptin and insulin
[4]. Leptin signaling is involved in the central adapta-
tion mechanisms to the changes in energy availabil-
ity, with a direct association of plasma levels with
body fat content [5] and the development of resis-
tance to its action in situations of excess energy stor-
age. Interestingly, the transport of leptin across the
blood-brain barrier is impaired in obesity, whereas
its central administration to AD-transgenic rodents
decreases the brain A� load [6].

Insulin is an important modulator of the metabolic
functions of the central nervous system, controlling
food intake, glucose homeostasis, and metabolism
[7,8]. Impairment of insulin signaling seems to play a
key role in the onset of AD through its influence on the
synthesis and degradation of A� peptides [9]. Insulin
resistance, associated with type 2 diabetes mellitus
(T2DM), is related to cognitive disorders in the CNS.
In fact, hyperinsulinemia could be associated with
reduced insulin transport across the blood–brain bar-
rier [10]. Nevertheless, the neuroprotective effect of
insulin is controversial, as recent data suggest that
insulin accelerates Alzheimer-related pathology [11].

4.2 LEPTIN- AND INSULIN-RELATED
SIGNALING IN THE CENTRAL
REGULATION OF ENERGY HOMEOSTASIS

Control of energy balance requires the CNS to sense
and act in response to changes in peripheral energy
stores and glucose levels. Leptin and insulin are key
hormones involved in the modulation of energy bal-
ance and glucose homeostasis involving the regula-
tion of hypothalamic neurons, although other brain
areas also modulate food intake and body weight [12].

Leptin is a hormone produced by adipose tissue
and other tissues, including the brain [13], and it

acts in the CNS to inhibit feeding behavior. In the
hypothalamus, leptin reduces food intake and body
weight by regulating the synthesis of both orexi-
genic and anorectic peptides produced mainly by
neurons of the arcuate nucleus [14]. The mechanism
involves the binding of leptin to the long-form of
its receptor (Ob-Rb) and the subsequent autophos-
phorylation of Janus kinase 2 (JAK2) and the activa-
tion of signal transducer and activator of transcrip-
tion 3 (STAT3) [15]. The phosphorylation of STAT3
at Tyr705 is a prerequisite for its dimerization and
nuclear translocation, whereas Ser727 phosphory-
lation is required for DNA binding and activation
of transcription. After the translocation of STAT3
to the nucleus, suppressor of cytokine signaling 3
(SOCS3) is activated, exerting feedback inhibition on
JAK2 and insulin receptor substrate (IRS) (Fig. 4.1).
Thus, an increase of SOCS3, as may occur in obesity
and states of leptin resistance, can negatively mod-
ulate insulin signaling and leptin receptors. In addi-
tion, leptin can activate the IRS-phosphatidylinositol
3-kinase (PI3K) cascade, due to stimulation of tyro-
sine phosphorylation of IRS proteins by JAK2. Acti-
vation of the PI3K/protein kinase B (Akt) pathway
may restrict food intake through the modulation of
extracellular regulated kinases (ERKs) [16]. These
kinases may exert their anorexigenic effects through
inhibition of hypothalamic AMP-activated protein
kinase (AMPK) that enhances food intake [17].

Insulin receptor activation induces tyrosine kinase
activity, resulting in receptor autophosphorylation
and subsequent phosphorylation of IRS proteins.
This event activates PI3K that phosphorylates
phosphatidylinositol-4’,5’-biphosphatate (PIP2) on
position 3’, producing PIP3, which stimulates
phosphoinositide-dependent protein kinase (PDK).
This kinase phosphorylates Akt that enters the
nucleus (Fig. 4.1), where it phosphorylates forkhead-
O transcription factor (FOXO1). This results in
FOXO1 exiting the nucleus and its inactivation,
reducing its stimulatory actions on the transcription
of orexigenic neuropeptides and its negative effect on
anorexigenic peptides in the hypothalamus. In this
way, it has been recently reported that overexpres-
sion of FOXO1 in the hypothalamus accounts for the
development of two hallmarks of the metabolic syn-
drome, obesity and glucose intolerance [18]. Thus,
due to this precise modulation of FOXO1, among
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Fig. 4.1 Insulin and leptin signaling in the hypothalamus. Overlap ( + , positive; −, negative) of insulin and leptin signaling
are marked with a circle. Abbreviations: Akt, protein kinase B; FOXO1, forkhead-O transcription factor; IR, insulin
receptor; IRS, insulin receptor substrate; ObRb, long-form of the leptin receptor; PI3K, phosphatidylinositol 3-kinase;
JAK2, Janus kinase-2; PDK, phosphoinositide-dependent protein kinase; PIP2, phosphatidylinositol-4’,5’-biphosphatate;
SOCS3, suppressor of cytokine signaling-3; STAT3, signal transducer and activator of transcription-3. For a color version
of this figure, please refer to the color plate.

other factors, one of the main central insulin actions
is to reduce food intake.

Leptin and insulin receptors are also expressed in
regions not classically associated with modulation of
energy homeostasis including the hippocampus, the
cerebral cortex, and the cerebellum [19, 20]. How-
ever, these areas may participate in the regulation of
food consumption, which is closely related to cog-
nitive functions [21]. Alterations of nutritional status
are linked to changes in the expression of proteins,
some of them regulated by leptin and insulin and
involved in energy metabolism in the hippocampus
[22]. On the other hand, leptin resistance is associated
with changes in the affective state and cognitive func-
tion, both related to the impairment of hippocampal
synaptic potential [23]. Moreover, amnesic patients
with hippocampal damage are unable to inhibit the
consumption of a second meal after having already

eaten because they cannot remember their last meal
[24]. Hippocampal damage in rats has been linked
to increased appetite, leading to an increase in body
weight [25], and the intake of a saturated-fat-rich diet
has a negative effect on hippocampal oxidative stress
and cognitive processes related to energy homeo-
stasis [26].

Several studies provide further evidence that other
brain areas are involved in eating behavior and con-
trol of energy balance. The cerebral cortex is impor-
tant for metabolic control as selective lesions on this
area alter feeding behavior [27]. Furthermore, some
cytokines exert modulatory effects on homeostatic
regulation in this area and activation of JAK2 and
STAT3 has been described in neurons of the cerebral
cortex [28] with decreased activity in the cortex of
obese rats in the presence of food [29]. As obese rats
are hyperleptinemic and may have high serum insulin
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levels, modulation of the JAK/STAT pathway by both
hormones could be involved in the decrease of cor-
tical activity. Leptin and insulin promote changes in
neuronal morphology through the ERK pathway, as
well as modulation of the activities of certain neuro-
transmitters, and also participate in synaptic plasticity
in this region [30, 31].

The cerebellum is a key area for the control of
locomotor activity [32] and cerebellar insulin recep-
tor levels have been shown to be reduced in exper-
imental ataxia [33]. We reported an increase in
p-Tyr705-STAT3 levels in the cerebellum after cen-
tral leptin administration [34] and activation of
STAT3 in hypothalamic AgRP neurons promotes
locomotor activity in the cerebellum, whereas leptin-
deficient rodents display reduced mobility [35]. There
is evidence indicating that this area is involved
in goal-oriented eating and animals with cerebel-
lar lesions have reduced food-seeking behavior [36].
Finally, experimental cerebellar damage reduces
body weight [37]. Thus, these hormones appear to
be involved in cerebellar control of motor activity
through activation of STAT3.

4.3 CROSS-TALK BETWEEN INSULIN AND
LEPTIN SIGNALING IN THE BRAIN

As previously mentioned, leptin and insulin are
key signals in modulating energy balance and body
weight in the hypothalamus; however, other brain
regions with structural and functional co-localization
of leptin and insulin receptors also play a relevant
role in modulating energy homeostasis [38]. During
the last years, the molecular bases of the overlapping
actions of these hormones in the modulation of energy
balance have been partially elucidated. Among them,
it is noteworthy that insulin induces the phosphory-
lation of JAK2, increasing activation of STAT3 [39].
Moreover, metformin, an antidiabetic drug, exerts its
anorexigenic effects, at least in part, by enhancing
central Ob-Rb expression [40]. Leptin increases lev-
els of the catalytic subunit of PI3K and activates this
kinase through JAK2 phosphorylation [41] and both
hormones additively suppress food intake, acting in
the same hypothalamic areas with significant cross-
talk among their signaling pathways [42].

Development of resistance to the action of both
hormones has a major role in the pathogenesis of
obesity and T2DM. The interrelationship between
these diseases and central signaling has been widely
studied, emphasizing the impairment of PI3K path-
way stimulation by leptin with no change in STAT3
pathway activation during the development of diet-
induced obesity [43]. Chronic central leptin infu-
sion may have a dual effect on insulin signal-
ing, decreasing the central response to insulin by
increasing SOCS3 association with the insulin recep-
tor, which inhibits insulin signaling at the level
of interaction of its receptor with IRS2 and the
PI3K signaling pathway in the hypothalamus by
enhancing the association between JAK2 and IRS2
[8]. Finally, leptin may reduce central and periph-
eral insulin signaling [44] by decreasing insulin
receptor expression and reducing the association
of IRS proteins with the regulatory subunit of
PI3K [45]. Weight gain during diet-induced obe-
sity also results in hypothalamic insulin resistance
by reducing phosphorylation of protein kinase B, a
marker of PI3K activity [46]. Insulin also induces
SOCS3, which then inhibits the insulin receptor and
inactivates leptin signaling by desphosphorylating
Ob-Rb [47].

The parallel effects of leptin and insulin are uni-
fied on the proopiomelanocortin (POMC) neurons,
with each hormone stimulating the PI3K pathway
in the absence of synaptic inputs in POMC neu-
rons [48]. In addition, intracerebroventricular injec-
tion of PI3K inhibitors blocks the capacity of both
hormones [49], but not other anorexigenic peptides,
to reduce food consumption, supporting the idea
that the PI3K pathway is implicated in leptin and
insulin metabolic actions in the brain. SOCS pro-
teins have been reported as a negative regulator of
intracellular cytokine signaling. Several members of
this family, and in particular SOCS3, contribute to
the development of leptin and insulin resistance due
to their ability to reduce signaling of these anorex-
igenic hormones, mainly in the hypothalamus [50].
Finally, increased endoplasmic reticulum (ER) stress
causes central leptin and insulin resistance; hence,
central injection of the ER stress inducer thapsigar-
gin modifies leptin and insulin signaling and inhibits
the anorexigenic and weight-reducing effects of both
hormones [51].
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4.4 CENTRAL LEPTIN AND INSULIN
RESISTANCE: CLINICAL IMPLICATIONS

4.4.1 Defective Intracellular Signaling and
Metabolic Alterations

Abnormalities in neuronal leptin-insulin signaling
have been reported to play a role in metabolic syn-
drome and neurodegenerative diseases. Leptin can
modify learning and memory in the hippocampus by
increasing long-term potentiation [52], and leptin sig-
naling deficiency may affect neuronal plasticity, as
has been described in the leptin receptor deficient
db/db mouse. These mice present impairment similar
to that described in rats with streptozotocin-induced
diabetes [53]. Central insulin signaling has important
effects in maintaining normal glucose homeostasis
and, interestingly, leptin can improve or normalize
glycemia in states of insulin-deficiency by mimick-
ing the actions of insulin [54].

Brain leptin concentrations depend on local
synthesis and transport to the brain and obesity may
also affect the amount of leptin reaching the CNS.
Leptin crosses the blood-brain barrier through a
saturable transport system and obese patients, with
hyperleptinemia, have lower cerebrospinal fluid
leptin concentrations than lean subjects [55]. Several
data support the hypothesis that brain resistance to
leptin in obese subjects with peripheral hyperleptine-
mia is due to diminished efficacy of leptin transport
to the brain and not to intra-hypothalamic insensi-
tivity [56]. Decreased activation of leptin signaling
increases the expression of orexigenic neuropeptides
and appears to be related to sudden onset diabetes
in knockout models of diabetic mice. In addition,
disruption of leptin signaling to the interactive
hypothalamic network of orexigenic neuropeptides
contributes to metabolic derangements related to the
metabolic syndrome [57].

On the contrary, increased leptin availability in
the hypothalamus reduces glycemia and attenuates
the response to a central insulin bolus [8] and cen-
tral leptin infusion maintains euglycemia in leptin
deficient ob/ob mice, as well as in animals receiv-
ing a high-fat diet [58]. Moreover, the concomitant
activation of hypothalamic leptin and insulin path-
ways seems to be linked to a nondiabetic phenotype
and exerts a protective effect against hypothalamic
deregulation of appetite [59].

It has been reported that experimental obe-
sity/hyperleptinemia damages hippocampal synaptic
transmission and that the deficit is closely related to
the impairment of leptin activity in the hippocam-
pus, whereas food restriction attenuates these symp-
toms [26]. Hyperleptinemia is associated with an
increased onset of depressive symptoms, especially
in the presence of abdominal obesity, suggesting
that underlying leptin resistance may play a dele-
terious role [60]. On the other hand, leptin infusion
has been shown to induce antidepressive behavior
in a forced swimming test [61]. Nevertheless, leptin
also has adverse effects, as central infusion increases
several acute-phase proteins and cytokines promot-
ing a systemic inflammatory profile compatible with
metabolic alterations [62].

The brain insulin/PI3K pathway is essential for
glucose and energy homoeostasis. Interventions that
reduce insulin receptors or insulin-dependent activa-
tion of this pathway lead to acute hyperglycemia,
reduced fat mass, and lower insulin sensitivity
to inhibit endogenous glucose synthesis [63]. The
amount of insulin reaching the brain, central insulin
biosynthesis, and intracellular signaling are modu-
lated by nutritional status, with a disruption of these
mechanisms in response to high-fat feeding [64].
Likewise, deregulation of insulin transport to the
brain and central insulin resistance to this hormone
has been reported in post mortem studies of obesity,
diabetes, and degenerative disorders, as well as in
experimental models of these diseases [65,66]. Addi-
tionally, inflammation and metabolic disturbances
increase with aging due to alterations in this path-
way [67].

Several studies in models of food restriction and
diet-induced obesity demonstrate abnormal insulin
action in the CNS [68, 69]. These reports show that
starvation or access to high-fat diets for short- and
medium-time periods alter central insulin actions on
food consumption, as well as glucose and energy
homeostasis.

4.4.2 Leptin, Insulin, and
Neurodegenerative Diseases

Leptin, in addition to having a hypothalamic role
in energy homeostasis, also has extra-hypothalamic
functions, modifying hippocampus, midbrain, and
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hindbrain through the increase of neurogenesis,
axonal growth, and synaptogenesis [70]. Leptin-
deficient patients have reduced brain weight, myeli-
nation, and synaptogenesis, whereas a positive effect
of leptin therapy on homeostatic, reward, and food-
related brain areas has been described, possibly due
to these stimulatory leptin effects [71]. In addition,
leptin is a potent neurogenic factor in the cortex, not
only inducing structural changes, but also modifying
neuronal excitability [72], suggesting a cognitive role
of leptin in this area.

This hormone also reduces cell death caused by
serum or neurotrophin withdrawal in hippocampal
cell cultures through the activation of JAK2/STAT3
pathway [73]. These neuroprotective effects of lep-
tin have also been demonstrated in vivo, reversing
dopaminergic neuron loss in an experimental model
of Parkinson disease (PD). Leptin decreases caspase
activation levels through a mechanism involving the
phosphorylation of JAK2 and ERKs, with a positive
effect of leptin on brain-derived neurotrophic fac-
tor also being involved, as this factor is a survival
molecule for dopaminergic neurons reduced in PD
[74]. In AD, leptin attenuates �-secretase process-
ing of amyloid precursor protein (APP) in neurons
and can reduce A� load levels, probably through
processes that change the composition of membrane
lipid rafts [6]. Nevertheless, high leptin levels, as
well as other adipokines, may have adverse effects in
other degenerative diseases, such as multiple sclerosis
(MS) and other inflammatory disorders. Leptin pro-
duction is enhanced both in serum and cerebrospinal
fluid of patients with multiple sclerosis [75]. In addi-
tion, it has been demonstrated that leptin can promote
experimental autoimmune encephalomyelitis in an
animal model of MS [76].

Neuronal insulin receptor signaling has a key role
in energy homeostasis status and the development of
neurodegenerative diseases. Hence, the coincidence
of metabolic disturbances where central insulin sen-
sitivity is affected, such as obesity, insulin resistance,
or diabetes with neuropsychiatric diseases, particu-
larly AD, has been reported in humans and in experi-
mental models [77,78]. Particularly, eating disorders
are serious mental illnesses where dysfunctions in
insulin signaling pathways [79] and in the insulin-like
growth factor (IGF) axis [80] have been implicated
in the pathophysiological mechanisms.

In the CNS, insulin, together with members of the
IGF axis, regulates cognitive functions after binding
to its receptors and activation of intracellular signal-
ing through interaction of the phosphorylated recep-
tor and IRSs, promoting inhibition of apoptosis and
stimulation of metabolism and plasticity in a mech-
anism mediated by phosphorylation of Akt [81] and
inhibition of GSK3�. These processes are altered in
an experimental model of AD [82] and activation of
PI3K/Akt mediates neuroprotection in AD and PD
models [83, 84].

Although the molecular mechanism linking AD
and type 2 diabetes remains partially undetermined,
several reports show a link between impaired PI3K
signaling and aberrant A� production [85] or hyper-
phosphorylation of tau due to lower activation of
Akt and increased GSK3� levels [86]. Insulin accel-
erates �APP/A� trafficking to the plasma mem-
brane and metformin reduces neuropathology related
to Alzheimer disease in obese mice [87], whereas
lower activation of the IRS/PI3K pathway dis-
rupts the processing of A�, increasing AD-related
symptoms [66].

4.5 CONCLUSION

Evidence is accumulating to indicate that leptin and
insulin interact to play an essential role in regu-
lating brain functions related to the modulation of
food intake and energy balance. Receptors for both
hormones are ubiquitously present in the brain and
regulate not only glucose homeostasis, but also sev-
eral CNS functions, such as reward, cognition, and
memory. Disruption of central leptin- and insulin-
signaling mechanisms causes adverse changes in
energy homeostasis closely related to the appearance
of metabolic disorders. The relationship between obe-
sity, leptin-insulin resistance, and type 2 diabetes and
neurodegenerative disorders has been demonstrated
in the last years and several studies indicate that
some degenerative diseases may be hypothesized to
be metabolic diseases with progressive impairment
in the use of glucose. Thus, pharmacological target-
ing of leptin- and insulin-signaling pathways could
be favorable for the normalization of brain related-
metabolic functions.
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Jiménez L, Canelles S, Viveros MP, Mela V,
Chowen JA, Argente J, Arilla-Ferreiro E, Barrios V.
Leptin-induced downregulation of the rat hippocampal
somatostatinergic system may potentiate its anorexi-
genic effects. Neurochem Int 2012; 61:1385–96.



84 METABOLIC SYNDROME AND NEUROLOGICAL DISORDERS

70. Bouret SG. Neurodevelopmental actions of leptin.
Brain Research 2010;1350: 2–9.

71. Frank S, Heni M, Moss A, von Schnurbein J, Fritsche
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Increased A� production prompts the onset of glu-
cose intolerance and insulin resistance. Am J Physiol
Endocrinol Metab 2012;302:E1373–80.

86. Richet E, Pooler AM, Rodriguez T, Novoselov SS,
Schmidtke G, Groettrup M, Hanger DP, Cheetham
ME, van der Spuy J. 2012. NUB1 modulation of
GSK3� reduces tau aggregation. Hum Mol Genet
2012; 21:5254–67.

87. Li J, Deng J, Sheng W, Zuo Z. Metformin attenu-
ates Alzheimer’s disease-like neuropathology in obese,
leptin-resistant mice. Pharmacol Biochem Behav
2012;101:564–74.


